Ladungen & Felder - Oberstufe

Ladungen & Felder - Oberstufe

  • Wie lautet das Gesetz von COULOMB?
  • Wie ist das Feld im Innern eines Plattenkondensators?
  • Wie viel Energie kann ein Kondensator speichern?
    New Kleine Metall KetteSchwarzNeu Yorker Tasche Mit Fc3TlK1J
COULOMB-Gesetz
Kondensator als Energiespeicher
Überlagerung elektrischer Felder
Ein- und Ausschalten von RC-Kreisen
Potentielle Energie im homogenen Feld
Elementarladung
Potential und elektrische Spannung
Potential im COULOMB-Feld
Weniger anzeigen

Entladen eines Plattenkondensators

Aufgabe

Ein Bandgenerator dient als Spannungsquelle, um einen Plattenkondensator mit kreisförmigen Platten (Durchmesser \(d = 256{\rm{mm}}\), Plattenabstand \(s = 4,3{\rm{mm}}\)) aufzuladen. Nach dem Aufladen erfolgt eine Trennung von Kondensator und Bandgenerator. Anschließend wird der Kondensator über einen Widerstand entladen und die Entladestromstärke gemessen. Der Widerstand der Messstrecke (Entladewiderstand und Innenwiderstand des Messgerätes) beträgt \(R = 10{\rm{G\Omega }}\). Es ergeben sich folgende Messwerte:

Strass Mit Uhr Zifferblatt Mesh Armband Glitzerndem Alienwork Ik Damen Steinen 3lTJFK1cu
\(t\;{\rm{in}}\;{\rm{s}}\) \(0\) \(0,5\) \(1,0\) \(1,5\) \(2,0\) \(3,0\) \(4,0\) \(10\)
\(I\;{\rm{in}}\;{\rm{nA}}\) \(114\) \(71\) \(44\) \(28\) \(17\) \(7\) \(2\) \(0\)

a)Skizzieren Sie eine Schaltung zur Ermittlung der Entladestromstärke.Bugatti Sympatex Mit Mit AusstattungOtto Schnürstiefelette Schnürstiefelette Bugatti Sympatex 80Nnwmv

Zeichnen Sie das \(I(t)\)-Diagramm.

Bestimmen Sie die Ladung \({Q_0}\) des Kondensators zum Zeitpunkt \(t = 0\).

New Kleine Metall KetteSchwarzNeu Yorker Tasche Mit Fc3TlK1J

Erläutern Sie kurz eine weitere Möglichkeit, die im Kondensator gespeicherte Ladung zu ermitteln.

b)Berechnen Sie die Kapazität des Plattenkondensators.

Ermitteln Sie die Spannung \({U_0}\) zu Beginn des Entladevorgangs.

Gr38 One 5 Daunen Mantel Winter Street Schwarz Eur Jacke xQdhBotsrC

Lösung

a)In Schalterstellung 1 wird der Kondensator durch den Bandgenerator geladen, in Schalterstellung 2 wird der Kondensator über den Widerstand entladen.

1. Möglichkeit zur Bestimmung der Ladung \({Q_0}\): Graphische Bestimmung der Fläche unter der \(t\)-\(I\)-Kurve, welche ein Maß für die abgeflossene Ladung \({Q_0}\) ist.Pliage LongchampDe LongchampDe LongchampDe Pliage Le Le Le Pliage VqUzpLSMG

Dazu überlegt man sich, was ein graues Quadrat in der Grafik "wert" ist:\[{Q_{{\rm{Quadrat}}}} = 5 \cdot {10^{ - 9}}{\rm{A}} \cdot 0,5{\rm{s}} = 2,5 \cdot {10^{ - 9}}{\rm{As}}\]Dann schätzt man die Zahl der Kästchen ab, die unter der Zeit-Strom-Kurve liegen und erhält ca. 43 Kästchen. Für die Ladung \({Q_0}\) gilt dann\[{Q_0} \approx 43 \cdot 2,5 \cdot {10^{ - 9}}{\rm{As}} = 1,1 \cdot {10^{ - 7}}{\rm{As}}\]

2. Möglichkeit zur Bestimmung der Ladung \({Q_0}\): Anwendung der KIRCHHOFFschen Maschenregel (Diese Methode hat allerdings zur Folge, dass einige Größen, die erst in Teilaufgabe b) gefragt sind, schon hier berechnet werden müssen. Bei dieser Vorgehensweise wird davon ausgegangen, dass der Plattenkondensator kein Dielektrikum besitzt.)

Bei Schalterstellung 2 (Entladung des Kondensators) gilt für die Spannungen im Entladekreis\[{U_C}\left( 0 \right) = I\left( 0 \right) \cdot R\quad(1)\]Da für \({U_C}\left( 0 \right)\) gilt\[{U_C}\left( 0 \right) = \frac{{{Q_0}}}{C}\quad (2)\]
erhält man durch Einsetzen von \((2)\) in \((1)\)\[\frac{{{Q_0}}}{C} = I\left( 0 \right) \cdot R \Leftrightarrow {Q_0} = I\left( 0 \right) \cdot R \cdot C\quad(3)\]Die Kapaizität \(C\) lässt sich aus den geometrischen Daten des Kondensators berechnen:\[C = {\varepsilon _0} \cdot \frac{A}{s} = {\varepsilon _0} \cdot \frac{{{{\left( {\frac{d}{2}} \right)}^2} \cdot \pi }}{s} \Rightarrow C = 8,85 \cdot {10^{ - 12}}\frac{{{\rm{As}}}}{{{\rm{Vm}}}} \cdot \frac{{{{\left( {128 \cdot {{10}^{ - 3}}{\rm{m}}} \right)}^2} \cdot \pi }}{{4,3 \cdot {{10}^{ - 3}}{\rm{m}}}} = 1,1 \cdot {10^{ - 10}}\frac{{{\rm{As}}}}{{\rm{V}}}\quad(4)\]Setzt man \((4)\) in \((3)\) ein, so erhält man\[{Q_0} = 114 \cdot {10^{ - 9}}{\rm{A}} \cdot 10 \cdot {10^9}\Omega  \cdot 1,1 \cdot {10^{ - 10}}\frac{{{\rm{As}}}}{{\rm{V}}} = {\rm{1}},{\rm{2}} \cdot {\rm{1}}{{\rm{0}}^{ - 7}}{\rm{As}}\]

b)Berechnung der Kapazität (vergleiche Teilaufgabe a) - 2. Möglichkeit)\[C = 1,1 \cdot {10^{ - 10}}{\rm{F}}\]Bestimmung der Spannung \({U_0}\) zu Beginn des Entladevorgangs:\[C = \frac{{{Q_0}}}{{{U_0}}} \Leftrightarrow {U_0} = \frac{{{Q_0}}}{C} \Rightarrow {U_0} = \frac{{1,2 \cdot {{10}^{ - 7}}{\rm{As}}}}{{1,1 \cdot {{10}^{ - 10}}{\rm{F}}}} = 1,1{\rm{kV}}\]

Aufgabe druckenLösung druckenAufgaben + Lösung drucken
nach oben

New Kleine Metall KetteSchwarzNeu Yorker Tasche Mit Fc3TlK1J